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Abstract A real-time quantitative polymerase chain

reaction (QPCR) was used to evaluate biokinetic coeffi-

cients of Nitrosomonas nitrosa and N. cryotolerans clusters

growing simultaneously in a batch mode of ammonia

oxidation. The mathematical models based on Monod

equation were employed to describe the competitive rela-

tionship between these clusters and were fitted to experi-

mental data to obtain biokinetic values. The maximum

growth rates (lm), half-saturation coefficients (KS),

microbial yields (Y) and decay coefficients (kd) of N. nit-

rosa and N. cryotolerans were 1.77 and 1.21 day-1, 23.25

and 23.06 mg N�L-1, 16 9 108 and 1 9 108 copies�mg

N-1, 0.26 and 0.20 day-1, respectively. The estimated

coefficients were applied for modeling continuous opera-

tions at various hydraulic retention times (HRTs) with an

influent ammonia concentration of 300 mg N�L-1. Mod-

eling results revealed that ammonia oxidation efficiencies

were achieved 55–98 % at 0.8–10 days HRTs and that the

system was predicted to be washed out at HRT of 0.7 days.

Overall, use of QPCR for estimating biokinetic coefficients

of the two AOB cluster growing simultaneously by use of

ammonia were successful. This idea may open a new

direction towards biokinetics of ammonia oxidation in

which respirometry tests are usually employed.

Keywords Ammonia oxidation � Model � Parameter �
QPCR � 16S rRNA gene

Introduction

Biokinetic models describe the relationship between

microbial growth and substrate utilization in ecosystems.

These models can help increase the understanding of the

biochemical reactions and guide appropriate design, oper-

ation, and control of biology-based technologies, including

biological wastewater treatment processes [19]. For this

reason, numerous studies of the biokinetic of biological

processes have been conducted [8, 13, 21].

Measurements of microbial concentrations are crucial

for identifying and estimating parameters of biokinetic

models, but accurate determination of parameters is usu-

ally problematic. They have been measured by quantifying

changes (i.e., dX/dt) in volatile suspended solids (VSS),

chemical oxygen demand (COD) [23], most probable

number (MPN) [6], optical density, and total DNA mass

[13]. However, these measures cannot distinguish micro-

organisms from organic materials, and cannot easily

measure populations of slow-growing microorganisms

such as nitrifying bacteria or methanogens accurately. The

most probable number method can be used to enumerate

microbial populations but this approach is time-consum-

ing, tedious, and normally underestimates microbe num-

bers due to cell clumping and cell aggregation on sludge

flocs [22].

Recently, quantitative real-time polymerase chain reac-

tion (QPCR) has been proven to be a rapid and reliable tool

to quantify populations of targeted microorganisms [14,

31]. Particularly, this method can effectively quantify

populations of slow-growing microorganisms (i.e.,
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doubling time [8 h) such as methanogens [31] and

ammonia-oxidizing bacteria (AOB) [16, 22].

Applications of QPCR in biokinetic studies have been

investigated in attached-growth nitrification [10] and sus-

pended-growth nitrification [15], and in model simulation

of methanogenic archaea [26]. However, the QPCR data

were not used directly in parameter estimation, and several

parameters (e.g., growth yield and decay coefficient) were

not estimated simultaneously. Finally, application of

QPCR for parameter estimation and uncertainty analysis

were not fully investigated.

For slow-growing microorganisms (e.g., nitrifiers), one

species has one 16S rRNA gene operon copy number per

genome [7, 25]. In this case, we can use the 16S rRNA

gene concentrations directly in biokinetics because they

can be considered as the microbial concentrations. As a

result, use of QPCR is similar to the MPN method in

biokinetics [6, 28], but with several advantages (e.g., more

reliable and faster analysis) as mentioned above.

The purpose of this study was to evaluate whether

QPCR data can be used to directly estimate biokinetic

parameters of multiple AOB species occurring simulta-

neously on the same substrate in an ammonia oxidizing

process treating industrial wastewater in batch mode.

Parameter uncertainties were also investigated to assess the

quality of parameter estimates. Modeling with the esti-

mated biokinetic parameters was also performed to predict

the ammonia oxidation of the same industrial wastewater in

continuous operation mode.

Materials and methods

Experimental setup

Operation and analytical methods

An inoculum system (IS) with 7-L working volume was

used to obtain a constant source of inoculum for the bi-

okinetic study. Sludge from an aerobic process treating

industrial wastewater was collected in Pohang, Korea, and

cultivated at 28 ± 2 �C and pH 7.5 with a hydraulic

retention time (HRT) of 10 days. Substrate that contains a

high concentration (300 mg N�L-1) of ammonia was

obtained from the same wastewater plant.

For the biokinetic experiment, a separate completely

stirred tank reactor (CSTR) with 6-L working volume was

used to culture AOB in batch mode. The reactor was

inoculated with 10 % (v/v) steady-state sludge from the IS.

The main components of wastewater used in this study

include: 281.7 mg NH4
?-N�L-1, 6 mg NO2

--N L-1,

6.4 mg�L-1 NO3
-, and 28.7 mg PO4

3-�L-1. The batch

system was operated at 28 ± 2 �C, pH 7.5, and minimum

dissolved oxygen (DO) concentration was maintained at

2 mg�L-1 to avoid inhibition of AOB growth by low DO.

Concentrations of NH4
?-N, NO2

--N, NO3
--N, and PO4

3-

were measured using identical ion-exchange chromatog-

raphy (Personal 790 IC, Metrohm, Switzerland).

This wastewater was collected from the steel processing

factory with an advanced technology that produced much

lower concentrations of ammonia and almost no toxic

materials (e.g., cyanides, phenol, or heavy metals) com-

pared to reported coke wastewaters [30]. Therefore, this

wastewater can be treated directly in biological processes

without pretreatment by physicochemical processes.

In the subsequent unit presentation, NH4
?-N and 16S

rRNA gene copies are denoted as ‘‘N’’ and ‘‘copies’’,

respectively; thus substrate concentration and half-satura-

tion coefficient have units of mg N�L-1 growth yield has

units of copies�mg N-1.

DNA extraction

Mixed liquor suspended solid (MLSS) samples were col-

lected, centrifuged at 14,000 rpm for 5 min, washed twice

with deionized distilled water, and then loaded into a fully

automated nucleic acid extractor (Magtration System 6GC,

PSS Co., Japan) with an appropriate Genomic DNA Puri-

fication Kit (PSS) to extract total genomic DNA. Dupli-

cated genomic DNA extracted from processed MLSS

samples were immediately stored at -20 �C until they

were used in QPCR.

QPCR analysis

QPCR to determine the quantities of AOB subgroups was

performed using a LightCycler 1.2 (Roche Diagnostics,

Mannheim, Germany). Five group-specific primer and

probe sets targeting 16S rRNA genes of AOBs were pre-

viously developed for sensitive detection and quantifica-

tion, where specificities of the sets were verified both in

silico and in vitro (Table 1), and were used in this study.

A real-time PCR mixture of 20 lL was prepared; it

consisted of 2 lL of template DNA, 1 lL each of forward

primer and of reverse primer (final concentration 500 nM),

1 lL of TaqMan probe (final concentration 100 nM), 5 lL

of LightCycler TaqMan Master mix (Roche Diagnostics),

and 10 lL of PCR-grade water. All measurements for

biokinetics including NH4
?-N and 16S rRNA genes were

duplicated.

Among five AOB subgroups, three species (i.e., Nitr-

osomonas europaea, N. nitrosa and N. cryotolerans) were

only detected in which N. nitrosa and N. cryotolerans were

found to be predominant (98.6–99.9 % 16S rRNA genes of

the AOB community). Correspondingly, N. europaea

accounted for a maximum of 1.4 % 16S rRNA genes of the
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total AOB abundance. Therefore, we applied the models to

estimate the biokinetic parameters for these two predomi-

nant AOB clusters.

Mathematical description

The Monod equation (Eq. 1) was used in this study:

l ¼ lmS

KS þ S
ð1Þ

where l is the specific growth rate (day-1), lm is the

maximum specific growth rate (day-1), KS is the half-sat-

uration coefficient (mg N�L-1), and S is the substrate

concentration (mg N�L-1).

The ‘‘two-clusters with single substrate’’ system was

applied to the batch system [27]:

dS

dt
¼ �

X2

k¼1

lmk

Yk

S

KSk þ S
Xk; k ¼ 1; 2 ð2Þ

dXk

dt
¼ lmkS

KSk þ S
� kdk

� �
Xk ð3Þ

where Y is growth yield (copies�mg N-1), X is the micro-

bial concentration (copies�mL-1), kd is the microbial decay

coefficient (day-1), and k in subscripts represent the first

(N. nitrosa) and second (N. cryotolerans) clusters.

The optimal choice of parameters was achieved by

minimizing the least-squares objection function (Eq. 4) [3]:

J hð Þ¼�
XNvar

j¼1

Wj

XNdata

i¼1

y tji;h
� �

�y tji
� �� �� �T

Wji y tji;h
� �

�y tji
� �� �� �

ð4Þ

where Nvar is the number of output variables (i.e., S, X1,

X2), Ndata is the number of data points, h(lm1, KS1, Y1, kd1,

lm2, KS2, Y2, kd2) is the parameter vector, y(tji) is the

measurement data, and, y(tji, ,h) is the model predictions.

Eq. (4) includes two weighted functions: the first (Wj) is a

vector that weights the differences among three output

variables; the second (Wji) is a square matrix with user-

supplied weighting coefficients that weights the differences

among measured values within each output (e.g.,

S1,…,SNdata). Commonly, Wj is chosen such thatPNvar

j¼1 Wj ¼ 1 and Wj [ 0 [17]; thus the values of Wj were

changed for each minimization search.

Confidence intervals of all parameters and correlations

among parameters within each parameter sets were deter-

mined from the covariance matrix (V), which is the inverse

of the Fisher information matrix (FIM) [3].

FIMj ¼
XNdata

i¼1

oy

oh
tji; hk

� �� �T

Wji

oy

oh
tji; hk

� �� �
;

j ¼ 1; 2; 3; 4; k ¼ 1; 2

ð5Þ

Vj ¼ FIM�1
j ð6Þ

where oy=oh are the sensitivity functions and Wji is the

weighting function, which is also the square weighting

matrix in Eq. (4). Because there were four different sen-

sitivity functions (i.e., oS=oh1, oX1=oh1, oS=oh2, oX2=oh2),

four FIM matrices and four covariance matrices were

computed. As a result, there were two covariance matrices

for one parameter set (h1 ¼ lm1;KS1; Y1; kd1½ �
orh2 ¼ lm2;KS2; Y2; kd2½ �). Thus which covariance matrix

Table 1 Primers and probe sets

for ammonia oxidation bacteria

[14]

F forward primer, T TaqMan

probe, R reverse primer

Name Target group Sequence (50?30) E. coli

numbering

NSMeur-828F Nitrosomonas

europaea cluster

GTTGT CGGAT CTAAT TAAG 828–846

NSMeur-984T CCTAC CCTTG ACATG CTTGG AATC 984–1007

NSMeur-1028R TGTCT TGGCT CCCTT TC 1028–1044

NSMmob-988F Nitrosococcus

mobilis cluster

GCTTG GAATT TTACG GAGAC 988–1017

NSMmob-1243T AGTGT ACAGA GGGTA GCCAA CCC 1243–1265

NSMmob-1282R CTACG AAGTG CTTTG TGAG 1282–1300

NSMnit-438F Nitrosomonas

nitrosa cluster

TTCGG TCGGG AAGAW ATAG 438–456

NSMnit-483T CGGTA CCGAC ATAAG AAGCA CCGG 483–506

NSMnit-633R CTAGT YATAT AGTTT CAAAC GC 633–654

NSMcry-211F Nitrosomonas

cryotolerans-cluster

AGACC TTRTG CTTTT GGAG 211–229

NSMcry-270T CCAAC TACTG ATCGT YGCCT TGGT 270–293

NSMcry-434R TTTTC TTCTC RACTG AAAGA G 434–454

NSS-209F Nitrosospira genus CAAGA CCTTG CGCTY TT 209–225

NSS-432T TTTCG TTCCG GCTGA AAGAG CT 432–453

NSS-478R TCTTC CGGTA CCGTC AKT 478–495
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gives the larger confidence intervals or parameter errors

will be selected.

Results

Performance of ammonia-oxidation system

During the first step of the nitrification process, concen-

trations of ammonia and Nitrosomonas clusters began to

change after a lag period of about 3 days of incubation

(Fig. 1). The initial concentration of ammonia,

281.7 mg�L-1, was oxidized completely after 6.8 days of

incubation. The initial 16S rRNA gene copy numbers for

the N. nitrosa and N. cryotolerans were 2.2 9 105 and

3.5 9 105 copies�mL-1, respectively. After the lag period,

the 16S rRNA gene concentrations of N. nitrosa and N.

cryotolerans increased rapidly and reached maxima of

2.1 9 107 and 2.2 9 107 copies�mL-1 at 7.3 and 9.8 days,

respectively. Measured abundance of 16S rRNA genes

indicated that N. nitrosa and N. cryotolerans comprised

98.6–99.9 % of the AOB community in the reactor.

Parameter estimation and uncertainty analysis

The models were fitted to the experimental data of

ammonia, N. nitrosa, and N. cryotolerans to evaluate bi-

okinetic parameters (Fig. 1). The models all had acceptable

fits (r2 [ 0.9).

Parameter estimates for two AOB clusters are presented

in Table 2. The maximum specific growth rate of N. nit-

rosa (1.77 day-1) was higher than that of N. cryotolerans

(1.21 day-1), probably because right after the lag phase the

former showed a sharper increase in growth rate than did

the latter. In contrast, at day 3 (beginning of biokinetic

analysis) the 16S rRNA gene concentration of N.

cryotolerans was twice that of N. nitrosa. The growth yield

of N. nitrosa (16 9 108 copies�mg N-1) was also higher

than that of N. cryotolerans (1 9 108 copies�mg N-1),

indicating that the former harvested more of the available

energy for cell growth than did the latter. The decay

coefficient (kd) of N. nitrosa was 1.3 times that of N.

cryotolerans. In contrast, the half-saturation coefficients

(KS) of the two Nitrosomonas clusters were identical

(23 mg N�L-1), implying that they have a similar affinity

for the substrate.

Although eight parameters were estimated, only five

parameters (lm1, kd1, lm2, Y2, kd2) were identifiable with

the 95 % confidence interval (CI) (Table 2). In addition,

because the CI of Y for N. nitrosa (38.3 9 108 cop-

ies�mg N-1) was higher than the parameter value

(16.0 9 108 copies�mg N-1), this Y estimate was also not

identifiable.

Along with the parameter estimation and confidence

intervals, correlation coefficients of the two Nitrosomonas
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Fig. 1 Changes in concentrations of NH4
?-N (open circles, left y-

axis), N. nitrosa (blue, right y-axis) and N. cryotolerans (red, right y-

axis). Points measurement; lines model predictions. Bars ± standard

deviation when larger than the symbols

Table 2 Estimated biokinetic coefficients and 95 % confidence

intervals

Parameters Values

N. nitrosa N. cryotolerans

lm (day-1) 1.77 ± 0.98 (\0.01) 1.21 ± 0.06

(\0.01)

KS (mg N�L-1) 23.25 23.06

Y (108 copies�mg N-1) 16.00 ± 38.27

(3.18)

1.00 ± 0.06 (0.01)

kd (day-1) 0.26 ± 0.14 (0.01) 0.20 ± 0.07

(\0.01)

CIs from covariance matrices based on microbial outputs are in

parentheses

Table 3 Correlation matrix of biokinetic parameters for N. nitrosa

lm Y kd

lm 1.00

Y 0.98 (0.59) 1.00

kd 0.86 (0.92) 0.84 (0.86) 1.00

Correlation coefficients from covariance matrix based on microbial

outputs are in parentheses

Table 4 Correlation matrix of biokinetic parameters for N.

cryotolerans

lm Y kd

lm 1.00

Y 0.51 (0.76) 1.00

kd 0.93 (0.89) 0.15 (0.94) 1.00

Correlation coefficients from covariance matrix based on microbial

outputs are in parentheses
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clusters were derived from the covariance matrix

(Tables 3, 4). Correlations between most parameter pairs

were \0.9, which is considered to be the threshold of

high correlation [24]. However, for N. nitrosa one pair

had correlation [0.9: lm versus Y (0.98); and for N.

cryotolerans one pair had correlation [0.9: lm versus kd

(0.93).

Application of estimated parameters to a continuous

ammonia oxidation system

Using the parameters estimated in batch mode, changes in

the concentrations of N. nitrosa, N. cryotolerans, and

residual ammonia were predicted if the batch system would

start at different flow rates (i.e., different hydraulic reten-

tion times) with the two species of AOBs. In continuous

mode, HRT (s) was incorporated into the rate equations

(Eqs. 2 and 3) as follows

dS

dt
¼ Sinf � S

s
�
X2

k¼1

lmk

Yk

S

KSk þ S
Xk; k ¼ 1; 2 ð7Þ

dXk

dt
¼ lmkS

KSk þ S
� kdk �

1

s

� �
Xk ð8Þ

where Sinf (mg N�L-1) is the influent substrate concentra-

tion. The initial concentrations of ammonia and N. nitrosa

and N. cryotolerans 16S rRNA genes in the bioreactor were

300 mg�L-1 and 2 9 107 copies�mL-1, respectively. The

influent nitrogen concentration was assumed to be

300 mg�L-1; the influent concentrations of N. nitrosa and

N. cryotolerans were assumed to be zero. These concen-

trations were selected based on the batch experiment.

The changes in concentrations of NH4
?-N and 16S

rRNA genes of N. nitrosa and N. cryotolerans clusters were

simulated at different HRT (Fig. 2). The residual NH4
?-N

concentrations decreased and remained at steady state at

HRT [0.7 days. This HRT was considered as the washout

point at which the NH4
?-N concentration remained similar

to the influent level after 10 days of incubation (Fig. 2a)

and the microorganisms were washed out (Fig. 2b). At

steady state (i.e., 0.8 days B HRT B 10 days), the expec-

ted NH4
?-N oxidation efficiencies ranged from 55 to 98 %

(Fig. 2a), corresponding to the increase of N. nitrosa 16S

rRNA gene concentrations (Fig. 2c, d). N. nitrosa com-

pletely outcompeted N. cryotolerans when the reactor

approached the steady state.

Discussion

The idea of biokinetics based on two or more species (or

groups) in wastewater treatment is based on the number of

predominant species (or groups). In the rate equations

presented here, the concentrations of the substrate and of

predominant species (or groups) are denoted as state vari-

ables (S, X1, and X2). Among five subgroups of AOB (i.e.,

genus Nitrosospira and four Nitrosomonas clusters) com-

monly used in wastewater systems [14, 15], three Nitros-

omonas clusters (i.e., N. europaea (data not shown), N.

nitrosa, and N. cryotolerans) were detected and two (i.e.,
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Fig. 2 a Predicted residual

concentrations of NH4
?-N at

different HRTs during

continuous-mode ammonia

oxidation of industrial

wastewater. Corresponding

concentrations of N. nitrosa

(solid line) and N. cryotolerans

(broken line) predicted at HRTs

of b 0.7 days, c 0.8 days, and

d 10 days
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N. nitrosa and N. cryotolerans) were predominant. The N.

europaea cluster, which is the most frequently isolated and

investigated because it usually outcompetes other AOB in

NH4
?-N-rich environments [15], was found to have little

influence in this study. This result contradicts a previous

finding in our laboratory in which the N. europaea cluster

outcompeted the N. nitrosa cluster [15]. This discrepancy

may be due to differences in substrate and seeding sludge

(i.e., different industrial wastewaters) used in the ISs and in

the biokinetic batch reactors. Based on microbial data in

this study, two Nitrosomonas clusters along with substrate

were selected for the biokinetic analysis.

In biokinetic analysis, one important task is to practi-

cally identify the estimated parameters to evaluate the

reliability of parameter values. As seen in the uncertainty

analysis (Table 2), five parameter estimates (lm1, kd1, lm2,

Y2, kd2) were identifiable practically, but three others (KS1,

Y1, KS2) were not. Attempts to identify all parameters were

not successful because FIMs were singular and could not

be inverted to obtain corresponding covariance matrices.

The singularity of FIMs was due to the linearly dependence

between the sensitivity functions of lm and KS (data not

shown). Hence, one of these dependent functions should be

excluded to avoid the singularity [21]. In this study, the

sensitivity functions of KS were removed from the FIMs, so

the CIs of KS for both N. nitrosa and N. cryotolerans were

not estimated. Finally, Y1 was not identifiable practically,

possibly due to the limited number (i.e., 13) of data points

[24].

In addition to estimation of parameter uncertainties,

determination of the correlation of parameter pairs is

also important in practical identifiability. If the correla-

tion coefficient between two parameters is zero or close

to zero, they are linearly independent, and this is the

most desirable condition in biokinetic analysis. However,

if it is [0.9, the pair is considered highly correlated [24];

compared to the zero-correlation case this condition is

less desirable because a change in one parameter will be

counteracted by a corresponding change of the correlated

parameter while still maintaining good model predic-

tions; this results in a broad range of parameter estimates

[9, 21]. One parameter pair of N. nitrosa and one pair of

N. cryotolerans were highly correlated (i.e., [0.9) in this

study (Tables 3, 4) probably because the models were

based on the Monod equation, which is well known for

high correlation among parameters [9, 18, 29]. Never-

theless, all of the correlation coefficients were \0.99 (the

threshold to cause the FIM to be singular [11], so the

FIM excluding KS could be successfully inverted.

Obviously, optimal experimental design should be used

to reduce or even eliminate the linear dependence among

parameters [2, 3], but this topic is beyond the scope of

this work.

The parameter uncertainties for estimated parameters

were determined both based on substrate and microbial

outputs because each parameter sets (h1, h2) has two

covariance matrices as explained in Eqs. (5) and (6). CIs

estimated from covariance matrices based on substrate

outputs are clearly larger than those from microbial ones

(Table 2). As a result, the former CIs were selected to

ensure that the parameter estimates fall within the intervals

with 95 % probability. However, not all the correlations

from covariance matrices based on microbial outputs were

smaller than those based on substrate (Tables 3, 4). Thus,

the correlations based on substrate are still chosen to

maintain consistency with the CI results.

Because no similar reports for dual-cluster biokinetic

with similar Nitrosomonas clusters exist, the present results

cannot be compared directly with others. In a previous

study [15], calculated lm for N. nitrosa clusters was

0.36 day-1 for, but this value was simply approximated

during exponential growth, and did not include uncertainty

analysis. In this study, the N. nitrosa cluster had lm = 1.77

day-1, five times larger than the previously report [15]. The

difference between these lm estimates for the N. nitrosa

cluster indicate that experiment conditions for biokinetic

analysis for system design and control should be estab-

lished carefully. These conditions (e.g., substrate, inoculum

source, operational conditions) in the applied system

should be as identical as possible to those in the biokinetic

experiment system.

The biokinetic results with high-strength ammonia oxi-

dation (500–1,000 mg N�L-1) in a sequencing bioreactor

based on respirometric method [20] might be used as a

reference. The values of lm and kd of aggregated AOB

were 1.96 day-1 and 0.44 day-1, respectively [20], which

are similar to our estimates of lm (1.77 and 1.21 day-1) and

kd (0.26 and 0.20 day-1). These results suggest that the lm

and kd when high-strength NH4
?-N wastewater is used are

much higher than those (i.e., *1.0 and 0.15 day-1 at

25 �C, [23]) when low-strength NH4
?-N wastewater is

used (e.g., \50 mg N�L-1 for domestic wastewater).

The KS values (23 mg N�L-1) in this study were much

higher than those for industrial wastewater (0.5 mg N�L-1)

[20] and those for domestic wastewater (0.5–1.0 mg

N�L-1) [23]. This difference indicates that both N. nitrosa

and N. cryotolerans had low affinity to the ammonia in

industrial wastewater used in this study. The high KS value

might be an effect of high substrate concentration [5], high

correlation with lm, or both.

Both N. nitrosa and N. cryotolerans were predicted to

wash out at HRT = 0.7 days, resulting in a rapid increase

in the residual ammonia concentration to the initial con-

centration of 300 mg N�L-1. The unstable behavior of the

system at 0.8 days HRT implies that a very small change in

flow rate near the washout point could have a large effect
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on the system performance [1]. Thus, the reciprocal of

0.8 days HRT (i.e., 1.25 day-1), which is higher than the

lm of N. cryotolerans but lower than that of N. nitrosa, is

considered as the threshold to distinguish the behaviors of

the two Nitrosomonas clusters right after simulation

(Fig. 2c). When HRT was 10 days, the ammonia concen-

trations reached steady state after 2 days of operation while

the microbial community was still at dynamic conditions;

this result agrees with previous reports of dynamic

microbial states [4, 12]. The outcompeting N. nitrosa is

predicted to be dominant over N. cryotolerans in the sys-

tem, particularly under steady-state conditions. However,

considering the variations in flow-rate, substrate charac-

teristics, nutrients, and environmental conditions, several

Nitrosomonas clusters can coexist.

This paper demonstrated successful application of

QPCR in biokinetic analysis of the ammonia oxidation

process by two Nitrosomonas clusters. Among eight

parameters, five were identifiable. Modeling showed that

the dynamic populations could maintain good ammonia

oxidation efficiency. Modeling with an ideal CSTR system

could not demonstrate the diversity of the microbial com-

munity usually seen in real wastewater systems because the

variations in flowrate, influent concentration, nutrients, and

environmental factors were not considered. However, the

application of QPCR for analysis of biokinetics shows

good promise for ammonia oxidation in which respirome-

try tests are usually employed.
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